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ENGINEERING MECHANICS 
 

II Semester: ME 

Course Code Category Hours / Week Credits Maximum Marks 

A0303 Core 
L T P C CIA SEE Total 

3 0 0 3 30 70 100 

Contact Classes: 48 Tutorial Classes: Nil Practical Classes: Nil Total Classes: 48 

 
COURSE OBJECTIVES: 
The course should enable the students to: 

I. Students should develop the ability to work comfortably with basic engineering mechanics concepts 
required for analyzing static structures. 

II. Identify an appropriate structural system to studying a given problem and isolate it from its 
environment, model the problem using good free-body diagrams and accurate equilibrium equations. 

III. Understand the meaning of centre of gravity (mass)/centroid and moment of Inertia using integration 
methods and method of moments 

IV. To solve the problem of equilibrium by using the principle of work and energy, impulse momentum 
and vibrations for preparing the students for higher level courses such as Mechanics of Solids, 
Mechanics of Fluids, Mechanical Design and Structural Analysis etc... 

MODULE-I Introduction to Mechanics & System of Forces Classes: 10 

Introduction: Basic Concepts, Laws of Motion, Force - types, characteristics - Principle of transmissibility - 
Types of Forces - Concurrent and non-concurrent Forces - Composition of force – Resultant - Triangle, 
Polygon and Parallelogram Law of Forces - Moment of Force and its Application - Varignon‘s theorem, 
Couples - Free Body Diagrams, Types of Supports and their reactions, Internal and External Forces - Types of 
Equilibrium, Equations of Equilibrium, Conditions of Equilibrium - Lami‘s Theorem. 

MODULE-II Friction, Centroid and Center of Gravity Classes: 10 

Friction: Types of friction, Limiting friction, Laws of friction, static and dynamic friction, application of 
laws of friction. Motion of bodies - wedge, screw, screw jack. Centroid and Center of Gravity: Introduction, 
Centroids of Lines and Areas - simple figures - Centroid of composite figures. Pappus theorem - Centre of 
gravity of simple solids, composite solids - Centroids of volumes. 

MODULE-III 
Moment of Inertia 

Classes: 10 

A: Area Moment of Inertia: Definition - Moment of Inertia of plane areas, Polar Moment of Inertia, Transfer 
Theorem, Moments of Inertia of Composite Figures. B: Mass Moment of Inertia: Introduction-moment of 
inertia of masses - Radius of gyration-Transfer formula for mass moment of inertia- by integration - Moment 
of Inertia of composite bodies. 

MODULE-IV Kinematics & Kinetics Classes: 09 

Kinematics: Rectilinear motion - Motion of Rigid Body under uniform and variable accelerations - motion 
under gravity- curvilinear motion – Projectiles - rotary motion. Kinetics: Analysis as a Particle and Analysis 
as a Rigid Body in Translation - D’Alemberts Principle - Connected bodies- Kinetics of rotating bodies. 
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MODULE-V Work, Power, Energy & Mechanical Vibrations Classes: 09 
Work, Power and Energy: Introduction, work-energy equation - motion of connected bodies - work done by a 
spring - general plane motion. Mechanical Vibrations: Definitions, concepts - simple harmonic motion - free 
vibrations - Simple and compound pendulums. 

Text Books: 

1. S. Timoshenko, D.H. Young, J.V. Rao and Sukumar Pati, “Engineering Mechanics”, Tata McGraw-Hill 
Education, 5th Edition, 2013. 

2. K.Vijaya Kumar Reddy, J. Suresh Kumar, “Engineering Mechanics”, B S Publications, 3 rd Edition, 2013. 

Reference Books: 

1. Beer, F.P and Johnston Jr. E.R. “Vector Mechanics for Engineers”, Tata McGraw-Hill Education 10th 
Edition (India) Pvt Ltd.. 2013. 

2. Fedinand. L. Singer, “Engineering Mechanics”, Harper & Row Publishers, 3rd Edition, 1975. 
3. S.Bhavikatti,“ATextBookofEngineeringMechanics”,NewAgeInternational,1st Edition,2012 
4. R.S. Khurmi, “A Text Book of Engineering Mechanics”, S.Chand Publications, 21st Edition, 2007. 
5. K L Kumar, “Engineering Mechanics”, Tata McGraw Hill Education, 4th Edition, 2011 

Web References: 

1. http://nptel.ac.in/courses/112103109/ 

2. http://nptel.ac.in/courses/112106180/ 

3. http://nptel.ac.in/courses/115104094/  
E-Text Books: 

1. http://www.mathalino.com/reviewer/engineering-mechanics/equilibrium-force-system 

2. http://ascelibrary.org/journal/jenmdt 

3. https://tll.mit.edu/sites/default/files/SUTDVideoThumb/freebodydiagrams.pdf  
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MODULE I 
Introduction to Mechanics & System of Forces 

  

Mechanics 
 

It is defined as that branch of science, which describes and predicts the conditions of rest 
or motion of bodies under the action of forces. Engineering mechanics applies the 
principle of mechanics to design, taking into account the effects of forces. 

 
Statics 

Statics deal with the condition of equilibrium of bodies acted upon by forces. 
 

Rigid body 
 

A rigid body is defined as a definite quantity of matter, the parts of which are fixed in 
position relative to each other. Physical bodies are never absolutely but deform slightly 
under the action of loads. If the deformation is negligible as compared to its size, the 
body is termed as rigid. 

 
 

Force 
 

Force may be defined as any action that tends to change the state of rest or motion of a 
body to which it is applied. 

 
The three quantities required to completely define force are called its specification or 
characteristics. So the characteristics of a force are: 

 
1. Magnitude 
2. Point ofapplication 
3. Direction ofapplication 
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Concentrated force/point load 
 

 
Distributed force 

 

 

 
Line of action of force 

 

The direction of a force is the direction, along a straight line through its point of 
application in which the force tends to move a body when it is applied. This line is called 
line of action of force. 

 
Representation of force 

 

Graphically a force may be represented by the segment of a straight line. 
 

 

Composition of two forces 
 

The reduction of a given system of forces to the simplest system that will be its 
equivalent is called the problem of composition of forces. 

 
Parallelogram law 

 

If two forces represented by vectors AB and AC acting under an angle α are applied to a 
body at point A. Their action is equivalent to the action of one force, represented by 
vector AD, obtained as the diagonal of the parallelogram constructed on the vectors AB 
and AC directed as shown in thefigure. 
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(P Q) 2 

P2Q22PQCos180 (P Q)2 (P2 Q2  2PQ) 

  
 
 

Force AD is called the resultant of AB and AC and the forces are called its components. 
 

 
R 


Now applying triangle law 

 

P 

Sinγ 
  Q 

Sinβ 
 R 

Sin(πα) 
 

Special cases 
 

Case-I: If α = 0˚ 

R 


  P Q) 
 

P Q R 

R = P+Q 
 

Case- II: If α = 
180˚ 

 
R    P Q) 

 
 

Q 
P 

P2Q22PQCosα

P2Q22PQCos0
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P2Q22PQCos90 P2 Q2 

Case-III: If α = 90˚ 

 
R  Q 

 

α = tan-1 (Q/P) 
 

 

P 

Resolution of a force 
 

The replacement of a single force by a several components which will be equivalent in action to the 
given force is called resolution of a force. 

 
 

 
Action and reaction 

 

Often bodies in equilibrium are constrained to investigate the conditions. 

w 
 

 
 

Free body diagram 
 

Free body diagram is necessary to investigate the condition of equilibrium of a body or 
system. While drawing the free body diagram all the supports of the body are removed and 
replaced with the reaction forces acting on it. 

R 

α 
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R 

1. Draw the free body diagrams of the followingfigures. 
 

 

 
2. Draw the free body diagram of the body, the string CD and thering. 
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Problem 1: 

3. Draw the free body diagram of the following figures. 
 

 
 

 
 

Equilibrium of colinear forces: 
 

Equilibrium law: Two forces can be in equilibrium only if they are equal in magnitude, 
opposite in direction and collinear in action. 

 
 

(tension) 
 
 
 
 
 

(compression) 
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R(P 2Q22PQcosα) 

Superposition and transmissibility 
 

Problem 1: A man of weight W = 712 N holds one end of a rope that passes over a pulley 
vertically above his head and to the other end of which is attached a weight Q = 534 N. Find 
the force with which the man’s feet press against the floor. 

 

 
Problem 2: A boat is moved uniformly along a canal by two horses pulling with forces P = 
890 N and Q = 1068 N acting under an angle α = 60˚. Determine the magnitude of the 
resultant pull on the boat and the angles β and ν. 

 

 
 

P = 890 N, α = 60˚ 
Q = 1068 N 

(890 2 10682289010680.5) 

 1698.01N 

β 

α 
ν 
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Q 

sinβ 
 P 

sinν 
 R 

sin(πα) 

sinβQsinα 
R 

1068sin60 
1698.01 

 33 
 

sinνPsin α 
R 

890sin60 
1698.01 

 27 
 

Resolution of a force 
 

Replacement of a single force by several components which will be equivalent in action to the 
given force is called the problem of resolution of aforce. 

 
By using parallelogram law, a single force R can be resolved into two components P and Q 
intersecting at a point on its line of action. 

 

 
Equilibrium of collinear forces: 

 

Equilibrium law: Two forces can be in equilibrium only if they are equal in magnitude, opposite in 
direction and collinear in action. 
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Law of superposition 
 

The action of a given system of forces on a rigid body will no way be changed if we add to or 
subtract from them another system of forces in equllibrium. 

 
Problem 3: Two spheres of weight P and Q rest inside a hollow cylinder which is resting on a 
horizontal force. Draw the free body diagram of both the spheres, together and separately. 

 
 

 
Problem 4: Draw the free body diagram of the figure shown below. 
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 

 

Problem 5: Determine the angles α and β shown in the figure. 
 
 

 
 

 
αtan1 

762
915

 3947' 

βtan1 
762
610

 5119' 
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Problem 6: Find the reactions R1 and R2. 
 

 

 
Problem 7: Two rollers of weight P and Q are supported by an inclined plane and vertical 
walls as shown in the figure. Draw the free body diagram of both the rollers separately. 
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Problem 8: Find θn and θt in the following figure. 
 
 

 
Problem 9: For the particular position shown in the figure, the connecting rod BA of an 
engine exert a force of P = 2225 N on the crank pin at A. Resolve this force into two 
rectangularcomponentsPhandPvhorizontallyandverticallyrespectivelyatA. 

 

 
Ph = 2081.4 N 
Pv = 786.5 N 

 
Equilibrium of concurrent forces in a plane 

 
 If a body known to be in equilibrium is acted upon by several concurrent, coplanar 

forces, then these forces or rather their free vectors, when geometrically added must 
form a closedpolygon. 

 
 This system represents the condition of equilibrium for any system of concurrent forces 

in aplane. 
 
 

w 
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S 

Rawtanα 
S wsecα 

 

 
Lami’s theorem 

 
If three concurrent forces are acting on a body kept in an equllibrium, then each force is 
proportional to the sine of angle between the other two forces and the constant of 
proportionality issame. 

 
 

 
 

P 

sinα 
 Q 

sinβ 
 R 

sinυ 
 

 

 

W 
 
 

S  Ra  W 

sin90 sin180α sin90α
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S = Psecα 

Problem: A ball of weight Q = 53.4N rest in a right angled trough as shown in figure. 
Determine the forces exerted on the sides of the trough at D and E if all the surfaces are 
perfectlysmooth. 

 

W 
 

Problem: An electric light fixture of weight Q = 178 N is supported as shown in figure. 
Determine the tensile forces S1 and S2 in the wires BA and BC, if their angles of inclination 
aregiven. 

 

S1  S2 178 
sin135 sin150 sin75 

 

 

 
 

S1 cosαP 
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Rb W S sin α 

W 
P

 
cosα 

sin α 

W P tan α 
 

Problem: A right circular roller of weight W rests on a smooth horizontal plane and is held in 
position by an inclined bar AC. Find the tensions in the bar AC and vertical reaction Rb if 
there is also a horizontal force P is active. 

 

 
 

Theory of transmissiibility of a force: 
 

The point of application of a force may be transmitted along its line of action without changing the 
effect of force on any rigid body to which it may be applied. 

 
Problem: 

 
 



 

3 

3

 

X  0 
S1 cos 30  20 sin 60 S2 sin

S  20 3 S2 
 

2 1 

S2 
2 2 

S 10 
2 2 1 

S2  3S1  20 
 

Y  0 

S1 sin 30 S2 cos 30 Sdcos 60
S1 S 

 

2 2 

S1

3 


20 
 20 

2 2 

S 30 
 

2 2 2 

S1  3S2  60 
 

Substituting the value of S2 
 

S1  3S1  20 3  60 

S1  3S1  60  60 

4S1  0 

S1  0KN 

S2  20  34.64KN 

3 

3

3 

3 

3 

 

sin 30 

 

60  20 

 

 in Eq.2, we get 

19 

 (1) 

 (2) 
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l 

Problem: A ball of weight W is suspended from a string of length l and is pulled by a 
horizontal force Q. The weight is displaced by a distance d from the vertical position as 
shown in Figure. Determine the angle α, forces Q and tension in the string S in the 
displacedposition. 

 

 
 

W 
 

cosα
d  

 
l 

αcos1 
d
 

sin2 αcos2 α 1 

 
sinα

d2 

   1 
l2 


1 

l 2 d 2 
l 

 
Applying Lami’s theorem, 

 
S  Q  W 

sin90 sin(90α) sin(180α) 

(1cos2 α) 
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1 
l2d2 

l2d2 

1 
l2d2 

l2d2 

W 

Q  W 

sin(90α) sin(180α) 

W cosα W dl
Q    

sinα 
l 

Q 
Wd

 
 
 
 

S 
sin α




l 

 Wl 

 

Problem: Two smooth circular cylinders each of weight W = 445 N and radius r = 152 mm 
are connected at their centres by a string AB of length l = 406 mm and rest upon a horizontal 
plane, supporting above them a third cylinder of weight Q = 890 N and radius r = 152 mm. 
Find the forces in the string and the pressures produced on the floor at the point of contact. 

 

 
 
 

cosα
203

 
304 

α48.1 Rg Rf 

 
Rg  

Re Q 
   

sin138.1 sin138.1 83.8 
Rg Re  597.86N 

 
 
 

Q 

W 
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Resolving horizontally 

X  0 
S Rfcos 48.1 

 597.86 cos 48.1 

 399.27N 
 

Resolving vertically 

Y  0 
Rd W Rfsin 48.1 

 445  597.86 sin 48.1 

 890N 
 

Re  890N 

S  399.27N 
 
 
 

Problem: Two identical rollers each of weight Q = 445 N are supported by an inclined plane 
and a vertical wall as shown in the figure. Assuming smooth surfaces, find the reactions 
induced at the points of support A, B and C. 

 
S 

 
 

 
Ra   S 445 

sin120 sin150  sin90 
 

Ra  385.38N 
S  222.5N 



 

Resolving vertically 

Y  0 
Rb cos 60  445 S sin 30 

Rb 
   3  445222.5 

2 2 
Rb  642.302N 

 
Resolving horizontally 

X  0 
RcR b sin 30 S cos 30 

 642.302 sin 30  222.5 cos 30

Rc 513.84N 

 

Problem: 
 

A weight Q is suspended from a small
AC is fastened at A while cord BC
P. If P = Q and α = 50˚, find the value of 

 

 
 

Resolving horizontally 

X  0 
S sin 50 Q sin β 
Resolving vertically 

Y  0 
S cos 50 Q sin βQ 

S cos 50 Q(1cosβ) 
Putting the value of S from 

 

222.5 cos 30 

small ring C supported by two cords AC and BC.
BC passes over a frictionless pulley at B and carries

˚, find the value of β. 

 Eq. 1, weget 

 
 
 

(1)

23 

 Rc 

BC. The cord 
carries a weight 

(1) 
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S cos 50 Q sin βQ 

S cos 50 Q(1cosβ) 
sinβ 

Q 
sin50 cos 50 Q(1cosβ) 

cot 50 
1cosβ

 
sinβ 

 0.839 sin β 1cosβ 
 

Squaring both sides, 
0.703sin2 β 1cos2 β 2 cosβ 
0.703(1cos2 β) 1cos2 β 2 cosβ 
0.703  0.703cos2 β 1cos2 β 2 cosβ 

 1.703cos2 β 2 cosβ 0.297  0 

cos2 β1.174 cosβ 0.297  0 

β 63.13 


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Method of moments 
 

Moment of a force with respect to a point: 
 
 

 
 

 Considering wrench subjected to two forces P and Q of equal magnitude. It is evident 
that force P will be more effective compared to Q, though they are of equalmagnitude. 

 The effectiveness of the force as regards it is the tendency to produce rotation of a body 
about a fixed point is called the moment of the force with respect to that point. 

 Moment = Magnitude of the force × Perpendicular distance of the line of action offorce. 
 Point O is called moment centre and the perpendicular distance (i.e. OD) is called 

momentarm. 
 Unit isN.m 

 
Theorem of Varignon: 

 
The moment of the resultant of two concurrent forces with respect to a centre in their plane is 
equal to the alzebric sum of the moments of the components with respect to some centre. 

 
Problem 1: 

 

A prismatic clear of AB of length l is hinged at A and supported at B. Neglecting friction, 
determine the reaction Rb produced at B owing to the weight Q of the bar. 

 

Taking moment about point A, 

R l Q cosα.
l
 

b 2 

Rb 
Q 

cosα2 
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B 

Problem 2: 
 

A bar AB of weight Q and length 2l rests on a very small friction less roller at D and against a 
smooth vertical wall at A. Find the angle α that the bar must make with the horizontal in 
equilibrium. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Resolving vertically, 
Rd cosαQ 

 
Now taking moment about A, 
 Rd .a 

Q.lcosα0 
cosα 

 Q.a 

cos2 α 
Q.lcosα0 

Q.aQ.lcos3 α 0 

cos3 α
Q.a

 
Q.l 

 

αcos1 

 
Problem 3: 

 

If the piston of the engine has a diameter of 101.6 mm and the gas pressure in the cylinder is 
0.69 MPa. Calculate the turning moment M exerted on the crankshaft for the particular 
configuration. 

a 
3 

l 
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 

l

Area of cylinder 
π 

(0.1016)2 
4 

 8.107103 m2 

 

Force exerted on connectingrod, 
 

F = Pressure × Area 
= 0.69×106 × 8.107×10-3 

= 5593.83 N 
 

Now α sin1 
178  27.93 
380



S cosαF 

S  
F

 
cosα 

 
 
 6331.29N 

 

Now moment entered on crankshaft, 
 

S cosα 0.178  995.7N  1KN 

 
Problem 4: 

 

A rigid bar AB is supported in a vertical plane and carrying a load Qat its free end. Neglecting 
the weight of bar, find the magnitude of tensile force S in the horizontal string CD. 

 

Taking moment about A, 

M A 0 

S. cosαQ.lsinα2 

S Q.lsinα 
l
cosα2 

S  2Q.tanα 

A 
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MODULE II 
Friction, Centroid and Center of Gravity 

 
Friction 

 
 The force which opposes the movement or the tendency of movement is called 

Frictional force or simply friction. It is due to the resistance to motion offered by 
minutely projecting particles at the contact surfaces. However, there is a limit beyond 
which the magnitude of this force cannotincrease. 

 If the applied force is more than this limit, there will be movement of one body over 
the other. This limiting value of frictional force when the motion is impending, it is 
known as LimitingFriction. 

 When the applied force is less than the limiting friction, the body remains at rest and 
such frictional force is  called Static Friction,  which will be having any value 
between zero and the limitingfriction. 

 If the value of applied force exceeds the limiting friction, the body starts moving over 
the other body and the frictional resistance experienced by the body while moving is 
known as Dynamic Friction. Dynamic friction is less than limitingfriction. 

 Dynamic friction is classified into following twotypes: 
a) Slidingfriction 
b) Rolling friction 
 Sliding friction is the friction experienced by a body when it slides over the other 

body. 
 Rolling friction is the friction experienced by a body when it rolls over a surface. 
 It is experimentally found that the magnitude of limiting friction bears a constant ratio 

to the normal reaction between two surfaces and this ratio is called Coefficient of 
Friction. 

 
W 

 
 
 
 

P 
 
 
 
 

N 

Coefficient of friction = 
F

 
N 

where F is limiting friction and N is normal reaction between the contact surfaces. 

Coefficient of friction is denoted by µ. 

Thus, μ 
F

 
N 

F 
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Laws of friction 
 

1. The force of friction always acts in a direction opposite to that in which body tends 
tomove. 

2. Till the limiting value is reached, the magnitude of friction is exactly equal to the force 
which tends to move thebody. 

3. The magnitude of the limiting friction bears a constant ratio to the normal reaction 
between the two surfaces of contact and this ratio is called coefficient offriction. 

4. The force of friction depends upon the roughness/smoothness of thesurfaces. 
5. The force of friction is independent of the area of contact between the two surfaces. 
6. After the body starts moving, the dynamic friction comes into play, the magnitude of 

which is less than that of limiting friction and it bears a constant ratio with normal force. 
This ratio is called coefficient of dynamicfriction. 

 
 

Angle of friction 
 

Consider the block shown in figure resting on a horizontal surface and subjected to horizontal 
pull P. Let F be the frictional force developed and N the normal reaction. Thus, at contact 
surface the reactions are F and N. They can be graphically combined to get the reaction R 
which acts at angle θ to normal reaction. This angle θ called the angle of friction is givenby 

tanθ
F  

 
N 

 
As P increases, F increases and hence θ also increases. θ can reach the maximum value α when F 
reaches limiting value. At this stage, 

tanα
F

 μ 
N 

 
This value of α is called Angle of Limiting Friction. Hence, the angle of limiting friction may 
be defined as the angle between the resultant reaction and the normal to the plane on which the 
motion of the body is impending. 

 
Angle of repose 
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Consider the block of weight W resting on an inclined plane which makes an angle θ with the 
horizontal. When θ is small, the block will rest on the plane. If θ is gradually increased, a stage 
is reached at which the block start sliding down the plane. The angle θ for which the motion is 
impending, is called the angle of repose. Thus, the maximum inclination of the plane on which 
a body, free from external forces, can repose is called Angle of Repose. 

 
Resolving vertically, 
N = W. cos θ 

 
Resolving horizontally, 
F = W. sin θ 

 

Thus, tan θ
F    

 
N 

If ɸ is the value of θ when the motion is impending, the frictional force will be limiting 
friction and hence, 

 

tanφ
F    

 
N 

μtanα 
φα 
Thus, the value of angle of repose is same as the value of limiting angle of repose. 

 
 

Cone of friction 

 
 When a body is having impending motion in the direction of force P, the frictional 

force will be limiting friction and the resultant reaction R will make limiting angle α 
with thenormal. 

 If the body is having impending motion in some other direction, the resultant reaction 
makes limiting frictional angle α with the normal to that direction. Thus, when the 
direction of force P is gradually changed through 360˚, the resultant R generates a 
right circular cone with semi-central angle equal toα. 
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Problem 1: Block A weighing 1000N rests over block B which weighs 2000N as shown in 
figure. Block A is tied to wall with a horizontal string. If the coefficient of friction between 
blocks A and B is 0.25 and between B and floor is 1/3, what should be the value of P to move 
the block (B), if 

 
(a) P ishorizontal. 
(b) P acts at 30˚ upwards tohorizontal. 

 
Solution: (a) 

 

 
 

Considering block A, 

V  0 

N1  1000N 
 

Since F1 is limiting friction, 

F1 μ 0.25 
N1 
F1  0.25N1  0.251000  250N 

H  0 

F1 T  0 

T F1  250N 
 

Considering equilibrium of block B, 

V  0 
N2  2000 N1  0 

N2  2000 N1  2000 1000  3000N 

F2 μ
1
 

N2 3 
F2  0.3N2  0.31000  1000N 
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P cos 30  P  1250 

H  0 

P F1 F2  250 1000  1250N 

 

(b) When P is inclined: 

V  0 

N2  2000 N1 P.sin 30  0 

N2  0.5P  2000 1000 

N2  3000  0.5P 
 

From law of friction, 
 

F 
1
 N 

2   3 2 

 

H  0 


130000.5P1000

0.5
P 

3 3 

P cos 30 F1 F2
 0.5 

Pcos30250 1000 P 
 3 

  0.5  

 3 
 

P  1210.43N 

 
Problem 2: A block weighing 500N just starts moving down a rough inclined plane when 
supported by a force of 200N acting parallel to the plane in upward direction. The same block 
is on the verge of moving up the plane when pulled by a force of 300N acting parallel to the 
plane. Find the inclination of the plane and coefficient of friction between the inclined plane 
and theblock. 

 

V  0 
N  500.cosθ 
F1 μN μ.500 cosθ 
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H  0 

200 F1  500.sinθ 
 200 μ.500 cosθ 500.sinθ 

V  0 

N  500.cosθ 
F2 μN μ.500.cosθ 

H  0 

500 sinθF2  300 

 500 sinθμ.500 cosθ 300 
Adding Eqs. (1) and (2), we get 

 
500 = 1000. sinθ 
sin θ = 0.5 
θ = 30˚ 

 
Substituting the value of θ in Eq. 2, 
500 sin 30 μ.500 cos 30  300 

 
 

(1) 
 
 

(2) 

μ 
50

 
500cos30 

 0.11547 



34  

P 
R 

Q 

l 

Parallel forces on a plane 

 
Like parallel forces: Coplanar parallel forces when act in the same direction. Unlike 

parallel forces: Coplanar parallel forces when act in different direction. Resultant of 

like parallel forces: 

Let P and Q are two like parallel forces act at points A and B. R = P 
+ Q 

 
A B 

 
Resultant of unlikeparallelforces: P 
R = P-Q R 

 
 

B 

R is in the direction of the force havinggreatermagnitude. 
A

 

Q 
 
 

Couple: 

 
Two unlike equal parallel forces form a couple. 

 
P 

 
 

A 
B

 

 
P 

 
The rotational effect of a couple is measured by its moment. 

Moment = P × l 

Sign convention: Anticlockwise couple (Positive) 
Clockwise couple (Negative) 
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Problem 1 :A rigid bar CABD supported as shown in figure is acted upon by two equal 
horizontal forces P applied at C and D. Calculate the reactions that will be induced at the 
points of support. Assume l = 1.2 m, a = 0.9 m, b =0.6 m. 

 
 

V  0 

Ra Rb 

 
Taking moment about A, 
Ra Rb 

Rb l P b P a 

Rb 
P(0.9  0.6) 

1.2 
Rb 0.25P() 

Ra 0.25P() 

 
Problem 2: Owing to weight W of the locomotive shown in figure, the reactions at the two 
points of support A and B will each be equal to W/2. When the locomotive is pulling the train 
and the drawbar pull P is just equal to the total friction at the points of contact A and B, 
determine the magnitudes of the vertical reactions Ra and Rb. 

 

V  0 

Ra Rb W 
 

Taking moment about B, 
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MB  0 

Ra  2a P b W a 

Ra 
W .a P.b 

2a 
Rb W Ra 

R WW.aP.b
b 2a 

 

Rb 
W .a P.b 

2a 
 

Problem 3: The four wheels of a locomotive produce vertical forces on the horizontal girder 
AB. Determine the reactions Ra and Rb at the supports if the loads P = 90 KN each and Q = 72 
KN (All dimensions are in m). 

 
 

V  0 

Ra Rb  3P Q 

Ra Rb  3 90  72 

Ra Rb  342KN 

M A 0 

Rb  9.6  90 1.8  90  3.6  90  5.4  72  8.4 

Rb  164.25KN 

Ra  177.75KN 

 
Problem 4: The beam AB in figure is hinged at A and supported at B by a vertical cord which 
passes over a frictionless pulley at C and carries at its end a load P. Determine the distance x 
from A at which a load Q must be placed on the beam if it is to remain in equilibrium in a 
horizontal position. Neglect the weight of thebeam. 

 
 

FBD 



37  

 
 
 

 
 
 
 
 
 
 

M A 0 

S l Q x 

xP.l 

Q 
 

Problem 5: A prismatic bar AB of weight Q = 44.5 N is supported by two vertical wires at its 
ends and carries at D a load P = 89 N as shown in figure. Determine the forces Sa and Sb in the 
two wires. 

 
 
 
 
 
 
 
 
 

Q = 44.5 N 
P = 89 N 

 
Resolving vertically, 

V  0 
SaSb P Q 

SaSb  89  44.5 

SaSb  133.5N 

OR 
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M A 0 

S l P 
l 
Q 

l
 

b 4 2 

Sb 

Sb 

PQ   
4 2 

89 44.5 
4 2 

Sb  44.5 

Sa 133.5  44.5 

Sa 89N 
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Centre of gravity 

 

Centre of gravity: It is that point through which the resultant of the distributed gravity force 
passes regardless of the orientation of the body in space. 

 
As the point through which resultant of force of gravity (weight) of the bodyacts. 

 
Centroid: Centrroid of an area lies on the axis of symmetry if it exits. 

 
Centre of gravity is applied to bodies with mass and weight and centroid is applied to plane 
areas. 

 

xcAixiyc 

Aiyi 

 

x A1x1A2x2 

A1 A2 

y A1y1 A2y2 

A1 A2 
 
 

xy Moment of area 
c c Totalarea 

x x.dA 
c A 

y y.dA 
c A 

c

c
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h2 3

 

Problem 1: Consider the triangle ABC of base ‘b’ and height ‘h’. Determine the distance of 
centroid from the base. 

 

Let us consider an elemental strip of width ‘b1’ and thickness ‘dy’. 
 

AEF  ABC 

b1h y b 
h 

bbh y
1 h 

bb1
1 h

 
Area of element EF (dA) = b1× dyy 

b 1 dy 

 

yy.dA 
 

 h
 

c 
h     A 

 y




y.b1h 
dy 

0    
1 

b.h 
2 

y2 
y3

h 

b  
2 3h 0

 

1 
b.h 

2 

2 h2 h3

 

2 h2 
  

h6 

h 
3Therefore, yc is at a distance of h/3 from base. 

y


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

 3 



Problem 2: Consider a semi-circle of radius R. Determine its distance from diametral axis. 
 

 
 

Due to symmetry, centroid ‘yc’ must lie on Y-axis. 
 

Consider an element at a distance ‘r’ from centre ‘o’ of the semicircle with radial width 
dr. 

 
Area of element = (r.dθ)×dr 

 

Moment of area about x = y.dA 
π R 

r.dθ.drr.sinθ
00 

πR 

 r 2 sinθ.dr.dθ 
0 0 

π R 

r 2.dr.sinθ.dθ 
0 0 
πr3 

R
 

  
0 0 

 
πR3 

.sinθ.dθ 

.si n θ.dθ 
0 3 


R3

cosθπ
 

3 


R3 

3 

0 

 

11


2 

R3 
3 

 

yMoment of area 
c Totalarea 
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R

2 R3 


π 

3
2 

2 

4R 
3π 

 

Centroids of different figures 
 

Shape Figure x y Area 
Rectangle  

 

b 
 

2 

d 
 

2 

bd 

Triangle  

 

0 h 
 

3 

bh 
 

2 

Semicircle 
 

 

0 4R 
 

3π 
πr2 

 

2 

Quarter circle 
 

 

4R 
 

3π 
4R 

 

3π 
πr2 

 

4 

 
 

Problem 3: Find the centroid of the T-section as shown in figure from the bottom. 
 
 

1 

2 
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y

Area (Ai) xi yi Ai xi Aiyi 
2000 0 110 10,000 22,0000 
2000 0 50 10,000 10,0000 
4000   20,000 32,0000 

 

Aiyi    A1 y1 A2 y2   32, 0000 
 

yc Ai1 2 
AA 40080 

 
Due to symmetry, the centroid lies on Y-axis and it is at distance of 80 mm from the bottom. 

 
Problem 4: Locate the centroid of the I-section. 

As the figure is symmetric, centroid lies on y-axis. Therefore, x = 0 
 

Area (Ai) xi yi Ai xi Aiyi 
2000 0 140 0 280000 
2000 0 80 0 160000 
4500 0 15 0 67500 

Aiyi 
A1 y1 A2 y2 A3 y3  59.71mm 

c A AAA 
i1 2 3 

Thus, the centroid is on the symmetric axis at a distance 59.71 mm from the bottom. 
 

Problem 5: Determine the centroid of the composite figure about x-y coordinate. Take x = 40 
mm. 

 

A1 = Area of rectangle = 12x.14x=168x2 

A2 = Area of rectangle to be subtracted = 4x.4x = 16 x2 
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    πR  

    πR  

πd 

2 π4x 2 
A3 = Area of semicircle to be subtracted = 

2 2 
2 π4x 2 

A4 = Area of quatercircle to be subtracted = 


A5 = Area of triangle =44

1 
 6x  4x  12x2 

2 

 
25.13x2 

 
12.56x2 

 
Area (Ai) xi yi Ai xi Aiyi 
A1 = 268800 7x = 280 6x =240 75264000 64512000 
A2 = 25600 2x = 80 10x=400 2048000 10240000 
A3 = 40208 6x =240 4  4x 

=67.906 
3π 

9649920 2730364.448 

A4 = 20096 10x4x
44x

 3π  
 492.09 

8x4x
44x

 3π  
 412.093 

9889040.64 8281420.926 

A5 = 19200 14x 
6x 

 16x 
3 

= 640 

4x 
 53.33 

3 

12288000 1023936 

 

A1x1 A2 x2 A3x3 A4 x4 A5 x5  
xc A AAAA 

1 2 3 4 5 

 326.404mm 

 

A1 y1 A2 y2 A3 y3 A4 y4 A5 y5  
yc A AAAA 

1 2 3 4 5 

 219.124mm 

 

Problem 6: Determine the centroid of the following figure. 
 

 

 

A = Area of triangle = 
1 
 80  80  3200m2

 
1 

2
 

2 πR2 
A2 = Area of semicircle= 

8 2 
πD2 

 
2513.274m 

A3 = Area of semicircle  1256.64m22 
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Area (Ai) xi yi Ai xi Aiyi 
3200 2×(80/3)=53.33 80/3 = 26.67 170656 85344 
2513.274 40 4  40 

16.97 
3π 

100530.96 -42650.259 

1256.64 40 0 50265.6 0 

x
A1x1 A2 x2 A3x3  49.57mm 

c A AA 
A  y  A

1     
y  

2
A  y

3
 

y 1 1 2    2 3 3  9.58mm 
c A AA 

1 2 3 
 

Problem 7: Determine the centroid of the following figure. 
 

A1 = Area of the rectangle 
A2 = Area of triangle 
A3 = Area of circle 

 
Area (Ai) xi yi Ai xi Aiyi 
30,000 100 75 3000000 2250000 
3750 100+200/3 

= 166.67 
75+150/3 
=125 

625012.5 468750 

7853.98 100 75 785398 589048.5 

 

x  Aixi 
A1x1 A2 x2 A3x3  86.4mm 

cA AAA 
i 

y  Aiyi 

1 2 3 

A1 y1 A2 y2 A3 y3  64.8mm
 

 
 

cA i
 A1A2A 3 
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Numerical Problems (Assignment) 
 
 
 

1. An isosceles triangle ADE is to cut from a square ABCD of dimension ‘a’. 
Find the altitude ‘y’ of the triangle so that vertex E will be centroid of 
remaining shadedarea. 

 

2. Find the centroid of the followingfigure. 

 
3. Locate the centroid C of the shaded area obtained by cutting a semi-circle of 

diameter ‘a’ from the quadrant of a circle of radius‘a’. 
 

4. Locate the centroid of the compositefigure. 
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Truss/ Frame: A pin jointed frame is a structure made of slender (cross-sectional dimensions 
quite small compared to length) members pin connected at ends and capable of taking load at 
joints. 

 
Such frames are used as roof trusses to support sloping roofs and as bridge trusses to support 
deck. 

 
Plane frame: A frame in which all members lie in a single plane is called plane frame. They 
are designed to resist the forces acting in the plane of frame. Roof trusses and bridge trusses 
are the example of plane frames. 

 
Space frame: If all the members of frame do not lie in a single plane, they are called as space 
frame. Tripod, transmission towers are the examples of spaceframes. 

 
Perfect frame: A pin jointed frame which has got just sufficient number of members to resist 
the loads without undergoing appreciable deformation in shape is called a perfect frame. 
Triangular frame is the simplest perfect frame and it has 03 joints and  03members. 

 
It may be observed that to increase one joint in a perfect frame, two more members are 
required. Hence, the following expression may be written as the relationship between number 
of joint j, and the number of members m in a perfect frame. 

 
m = 2j – 3 

 
(a) When LHS = RHS, Perfectframe. 
(b) When LHS<RHS, Deficientframe. 
(c) When LHS>RHS, Redundantframe. 

 
Assumptions 

 

The following assumptions are made in the analysis of pin jointed trusses: 
 

1. The ends of the members are pin jointed(hinged). 
2. The loads act only at thejoints. 
3. Self weight of the members isnegligible. 

 
Methods of analysis 

 
1. Method ofjoint 
2. Method ofsection 
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Problems on method of joints 
 

Problem 1: Find the forces in all the members of the truss shown in figure. 
 

 

tanθ 1 

θ 45 

Joint C 

S1S2cos45 

S140KN(Compression) 

S2 sin 45  40 

S2  56.56KN (Tension) 

Joint D 

 
S3  40KN (Tension) 

S1 S4 40KN (Compression) Joint 

B 

Resolving vertically, 

V  0 
S5 sin 45 S3 S2 sin 45 
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S5  113.137KN (Compression) 
 

Resolving horizontally, 

H  0 
S6 S5 cos 45 S2 cos 45 

S6  113.137 cos 45  56.56 cos 45 

S6  120KN (Tension) 
 

Problem 2: Determine the forces in all the members of the truss shown in figure and indicate 
the magnitude and nature of the forces on the diagram of the truss. All   inclined members are 
at 60˚ to horizontal and length of each member is2m. 

 

 
 

Taking moment at point A, 
 

M A 0 

Rd  4  40 1 60  2  50  3 

Rd  77.5KN 
 

Now resolving all the forces in vertical direction, 

V  0 
Ra Rd  40  60  50 

Ra  72.5KN 

Joint A 

V  0 
RaS1sin60 

S183.72KN (Compression) 
 

H  0 

S2S1 cos60 

 
 
 

   Ra 
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S141.86KN(Tension) 

 
Joint D 

 

V  0 

S7 sin 60  77.5 

S7  89.5KN (Compression) 
 

H  0 

S6 S7 cos 60 

S6  44.75KN (Tension) 

Joint B 

V  0 
S1 sin 60 S3 cos 60  40 

S3  37.532KN (Tension) 
 

H  0 

S4 S1 cos 60 S3 cos 60 

S4  37.532 cos 60  83.72 cos 60 

S4  60.626KN (Compression) 

Joint C 

V  0 
S5 sin 60  50 S7 sin 60 

S5  31.76KN (Tension) 
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MODULE V 
MECHANICAL VIBRATIONS 

 

 

Definitions and Concepts 
 

Amplitude :Maximum displacement from equilibrium position; the distance from the midpoint of a wave to its 
crest or trough. 

 
Equilibrium position: The position about which an object in harmonic motion oscillates; the center of vibration. 

 
Frequency: The number of vibrations per unit of time. 

 
Hooke’s law: Law that states that the restoring force applied by a spring is proportional to the displacement of the 
spring and opposite in direction. 

 
Ideal spring: Any spring that obeys Hooke’s law and does not dissipate energy within the spring. 

Mechanical resonance: Condition in which natural oscillation frequency equals frequency of a driving force. 

Period: The time for one complete cycle of oscillation. 

Periodic motion: Motion that repeats itself at regular intervals of time. 
 

Restoring force:The force acting on an oscillating object which is proportional to the displacement and always 
points toward the equilibrium position. 

 
Simple harmonic motion: Regular, repeated, friction-free motion in which the restoring force has the 
mathematical form F = - kx. 

 
Simple Harmonic Motion 

A pendulum, a mass on a spring, and many other kinds of oscillators exhibit a special kind of oscillatory motion 
called Simple Harmonic Motion (SHM). 

 
SHM occurs whenever : 

i. h 

ere is a restoring force proportional to the displacement from equilibrium: F x 

ii. t 

he potential energy is proportional to the square of the displacement: PE  x2 

iii. t 

he period T or frequency f = 1 / T is independent of the amplitude of the motion. 

iv. t 

he position x, the velocity v, and the acceleration a are all sinusoidal in time. 
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t t 

x v 

(Sinusoidal means sine, cosine, or anything in between.) 
As we will see, any one of these four properties guarantees the other three. If one of these 4 things is true, then 
the oscillator is a simple harmonic oscillator and all 4 things must be true. 

 
Not every kind of oscillation is SHM. For instance, a perfectly elastic ball bouncing up and down on a floor: the 
ball's position (height) is oscillating up and down, but none of the 4 conditions above is satisfied, so this is not an 
example of SHM. 

 
A mass on a spring is the simplest kind of Simple Harmonic Oscillator. 

 
 

k   Frestore 

m 

Hooke's Law: Fspring = – k x 
 

(–) sign because direction of F 

 
 
 
 

spring 

 
 
is opposite to the direction of 

 
 
 

Frestore 

x 
 

relaxed: x = 0 

displacement vector x(bold font indicates vector) 
 

k = spring constant = stiffness, 
units [k] = N / m 

 
Big k = stiff spring 

 

x 

x 
Definition: amplitudeA = m |x 

x 

 
max| = |x 

 
min|. 

 
positions x = +A and x = –A 

Mass oscillates between –A 0 +A extreme 

 
 

Notice that Hooke's Law (F = kx) is condition i : restoring force proportional to the displacement from 
equilibrium. We showed previously (Work and Energy Chapter) that for a spring obeying Hooke's Law, the 
potential energy is U = (1/2)kx2 , which is condition ii. Also, in the chapter on Conservation of Energy, we 
showed that F = dU/dx, from which it follows that condition ii implies condition i. Thus, Hooke's Law and 
quadratic PE (U  x2) are equivalent. 

 
We now show that Hooke's Law guarantees conditions iii (period independent of amplitude) and iv (sinusoidal 
motion). 

 
We begin by deriving the differential equation for SHM. A differential equation is simply an equation containing 
a derivative. Since the motion is 1D, we can drop the vector arrows and use sign to indicate direction. 

 

Fnet  m a and Fnet   k x  m a   k x 

a  dv / dt  d2x / dt2  
d2x    

k 

d t2 m 
The constants k and m and both positive, so the k/m is always positive, always. For notational convenience, we 

write k / m  2 . (The square on the  reminds us that 2 is always positive.) The differential equation 
becomes 

x 
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k 

m 

2

d2x 
 

 

d t2 
  2 x 

 
(equation of SHM) 

This is the differential equation for SHM. We seek a solution x = x(t) to this equation, a function x = x(t) whose 
second time derivative is the function x(t) multiplied by a negative constant (2 = k/m). The way you solve 
differential equations is the same way you solve integrals: you guess the solution and then check that the solution 
works. 

 

 
Based on observation, sinusoidal solution: x(t)  A cost   , 

 

where A,  are any constants and (as we'll show)   . 
 

A = amplitude:  x oscillates between +A and –A 

 = phase constant (more on this later) 

Danger: t and  have units of radians (not degrees). So set your calculators to radians when using this formula. 
 

Just as with circular motion, the angular frequency  for SHM is related to the period by 
 

  2  f 
2 

 , T = period. 
T 

(What does SHM have to do with circular motion? We'll see later.) 

 
Let's check that x(t)  A cost   is a solution of the SHM equation. 

 

Taking the first derivative dx/dt , we get v(t)  
dx

 
dt 

  A sin t   . 
d 

cost   


d cos() d  
, (  t  )

 
 

Here, we've used the Chain Rule: dt d  d t 

  sin    sin(t  ) 
 

Taking a second derivative, we get 

d2x dv d 2 
a(t)    A sin t     A  cos(t  ) 

 
d2x 

 
 

dt2 

d2x 
 

 

dt2 

dt dt dt 

  2 A cos(t  )

  2 x 

 

This is the SHM equation, with 2  
k 

,  
m 

 

We have shown that our assumed solution is indeed a solution of the SHM equation. (I leave to the 
mathematicians to show that this solution is unique. Physicists seldom worry about that kind of thing, since we 
know that nature usually provides only one solution for physical systems, such as masses on springs.) 

 
We have also shown condition iv: x, v, and a are all sinusoidal functions of time: 

k 

m 
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k 

m 


x 

y 
1 

point (x, y) 

x(t)  A cost  
v(t) 

a(t) 

  A  sin(t  ) 

  A 2 cos(t  ) 

The period T is given by   

amplitude A (condition iii). 

2  
T 

T  2 


. We see that T does not depend on the 

 

Let's first try to make sense of   : big  means small T which means rapid oscillations. According to 

the formula, we get a big  when k is big and m is small. This makes sense: a big k (stiff spring) and a small 
mass m will indeed produce very rapid oscillations and a big . 

 
A closer look atx(t) = A cos(ωt+ϕ) 

 
Let's review the sine and cosine functions and their relation to the unit circle. We often define the sine and cosine 
functions this way: 

 

cos  
adj 

hyp 
 
opp 

 
 

opposite 

sin  
hyp adjacent 

 

This way of defining sine and cosine is correct but incomplete. It is hard to see from this definition how to get the 
sine or cosine of an angle greater than 90o. 

 
A more complete way of defining sine and cosine, a way that gives the 
value of the sine and cosine for any angle, is this: Draw a unit circle (a 
circle of radius r = 1) centered on the origin of the x-y axes as shown: 

 
Define sine and cosine as 

cos   adj  
x  x

 

hyp 1 

sin   opp 
y 
 y 

hyp 1 
 

This way of defining sin and cos allows us to compute the sin or cos of 
any angle at all. 

 
For instance, suppose the angle is  = 210o. 
like this: 

 
The point on the unit circle is in the third 
and y are negative. So both cos = x and 

 
 
 

Then the diagram looks 
 
 

quadrant, where both x 
sin = y are negative 

 
 
 
 
 

For any angle , even angles bigger than 360o (more than once around 
the circle), we can always compute sin and cos. When we plot sin and cos vs angle , we get functions that 
oscillate between +1 and –1 like so: 

m 

k 

k / m 

hypotenuse 
 



point (x, y) 

r = 
1 


x 

y 
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cos

+1 
 

–1 

 = 3600 = 2 rad 
 



sin







We will almost always measure angle  in radians. Once around the circle is 2 radians, so sine and cosine 
functions are periodic and repeat every time  increases by 2 rad. The sine and cosine functions have exactly 
the same shape, except that sin is shifted to the right compared to cos by    . Both these functions are 
called sinusoidal functions. 

 
 
 
 
 







The function cos(  ) can be made to be anything in between cos() and sin() by adjusting the size of the 
phase between 0 and 2. 

 

cos , (  0)  sin   cos  
  , 

 
 

   / 2
 2  

The function cos(t + ) oscillates between +1 and 1, so the function Acos(t + ) oscillates between +A and 
A. 

 
 
 
 

 t 
 
 
 
 

Why   
2 

? The function f() = cos is periodic with period   . Since  t and  is some 
T 

constant, we have   t. One complete cycle of the cosine function corresponds to    and t = T, (T is 
the period). So we have 2 =  T or   

2 
. Here is another way to see it: cos(t)  cos

 
2 

t  
is periodic 

T  T 
 

with period t = T. To see this, notice that when t increases by T, the fraction t/T increases by 1 and the fraction 
2t/T increases by 2. 

+1 

–1 
 = 2

 = 

+1 

–1 

cos sin

Acos(t) 
 

+A 

–A 
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⏟ 

2

Acos(t) Acos(t) 

+A 
 

t t 
 

 

t = T 

–A       
t) = 2



Now back to simple harmonic motion. Instead of a circle of radius 1, we have a circle of radius A (where A is the 
amplitude of the Simple Harmonic Motion). 

 
 

SHM and Conservation of Energy: 
 

Recall PEelastic = (1/2) k x2 = work done to compress or stretch a spring by distance x. 
 

If there is no friction, then the total energy Etot = KE + PE = constant during oscillation. The value of Etot depends 
on initial conditions – where the mass is and how fast it is moving initially. But once the mass is set in motion, 
Etot stays constant (assuming no dissipation.) 

 

At any position x, speed v is such that 1 m v2    1 k x2    E . 
2 2 tot 

 

When |x| = A, then v = 0, and all the energy is PE: K⏟E   P⏟E  Etot 

 
So total energy E  1 k A2 

0 (1/ 2)kA2 

tot 2 

When x = 0, v = vmax, and all the energy is KE: 

 
K⏟E    PE 

(1/ 2)mvmax 
2 0 

 
 Etot 

So, total energy E  tot  1 m v 2 
max 

 
 
 

 
 

So, we can relate vmax to amplitude A :PEmax = KEmax = Etot 1 k A2  1 m v 2 



vmax     A 

2 2 max 

y 
(1/2)kx2 

Etot   = 
KE + PE 

KE 

PE 

x 
A +A 

+A 

–A      

.
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Example Problem: A mass m on a spring with spring constant k is oscillating with amplitude A. Derive a 
general formula for the speed v of the mass when its position is x. 

 

Answer: v(x)  A 
 
 
 

Be sure you understand these things: 
 

range of motion 
 
 
 
 

|x| = A 
v = 0 
PE = max 
KE = min 
|F| = max 
|a| = max 

x = 0 
|v| = max 
PE = min 
KE = max 
|F| = 0 
|a| = 0 

k 

m 
1  A 

 x 
2
 

 
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k 

m 

mg / L

Pendulum Motion 
 

A simple pendulum consists of a small mass m suspended at the end of a massless string of length L. A 
pendulum executes SHM, ifthe amplitude is not too large. 

 

Forces on mass : y 

FT = tension 
x
 

 
 
 
 

 
  x / L (rads) 

mg sin





mg 

 

mg cos




The restoring force is the component of the force along the direction of motion: 

restoring force =  mg sin    mg    mg 
x
 

L 

Claim: sin    (rads) when  is small. sin   
h
 

L 
 

 
If  small, then h  s, and L  R, 

h so sin  . 
 

 
R 

 
 

F    
mg  x is exactly like Hooke's Law F 

 
 

 
Try it on your calculator:  = 5o = 0.087266..rad, sin  = 
0.087156.. 

   k x , except we have replaced the constant k with 
restore  L  restore 

 
another constant (mg / L). The math is exactly the same as with a mass on a spring; all results are the same, 
except we replace k with (mg/L). 

 

T  2    T  2  2
spring pend 

 
 

Notice that the period is independent of the amplitude; the period depends only on length L and acceleration of 
gravity. (But this is true only if  is not too large.) 


L 

x 

L 

g 

L 

s 


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R 

t 
 
x 

–A +A 

v 

a 

 2

x x

SHM and circular motion 
 

There is an exact analogy between SHM and circular motion. Consider a particle moving with constant speed v 
around the rim of a circle of radius A. 
The x-component of the position of the particle has exactly the same mathematical form as the motion of a mass 
on a spring executing SHM with amplitude A. 

 

Angular velocity     
d   

 const 
d t 

   t so 

 

This same formula also describes the sinusoidal motion of a mass on a spring. 
 
 

0 
 

That the same formula applies for two different situations (mass on a spring & circular motion) is no accident. 
The two situations have the same solution because they both obey the same equation. As Feynman said, "The 

same equations have the same solutions". The equation of SHM is 

particle in circular motion obeys this same SHM equation. 

d2x 
 

 

d t2 
  2 x . We now show that a 

Recall that for circular motion with angular speed , the acceleration of a the particle is toward the center and has 
 

magnitude | a
↼ 

|  
v 

. Since v =  R , we can rewrite this as 
R 

| a
↼ 

| 
 R 2 

  2 R 
R 

 

Let's set the origin at the center of the circle so 
the position vector R is along the radius. Notice 
that the acceleration vector a is always in the 
direction opposite the position vector R . Since 
| a

↼ 
|     2  R

↼
 , the vectors a an↼d R are 

related by a
↼     2 R .  The x- 

component of this vector equation is: 
a   2 R . If we 

d2x 
write Rx = x , then we 
which is the SHM 

ehqavueation.  Done.  
2  x , 

d t2 
0
 

Example 
A mass of 0.5 kg oscillates on the end of a spring on a horizontal surface with negligible friction according to the 

equation x  A cosωt . The graph of F vs. x for this motion is shown below. 

v 
 

A 

    
 

x 

–A +A 
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m 

x 

 
The last data point corresponds to the maximum displacement of the mass. 
Determine the 
(a) angular frequency ω of the oscillation, 
(b) frequencyf of oscillation, 
(c) amplitude of oscillation, 
(d) displacement from equilibrium position (x = 0) at a time of 2 s. 

 
 

Solution: 
(a) We know that the spring constant k = 50 N/m from when we looked at this graph earlier. So, 

ω 
50 N / m 

0.5 kg 
 10 

rad 

s 

(b) f  
ω 

 
10 rad / s 

 1.6 Hz 
  

2π 2π 
(c) The amplitude corresponds to the last displacement on the graph, A = 1.2 m. 

(d) x  A cosωt   1.2 mcos10 rad / s2 s  0.5 m 
 
 
 

Example 
A spring of constant k = 100 N/m hangs at its natural length from a fixed stand. A mass of 3 kg is hung on the end 
of the spring, and slowly let down until the spring and mass hang at their new equilibrium position. 
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m

0.4 J 

2U 

m 

24.5 J 
3 kg 

(a) Find the value of the quantity x in the figure above.The spring is now pulled down an additional distance x and 
released from rest. 
(b) What is the potential energy in the spring at this distance? 
(c) What is the speed of the mass as it passes the equilibrium position? 
(d) How high above the point of release will the mass rise? 
(e) What is the period of oscillation for the mass? 

 
Solution: 
(a) As it hangs in equilibrium, the upward spring force must be equal and opposite to the downward weight of the 
block. 

 
Fs  mg 

kx  mg 
mg 

 
 

Fs 
 

 
3 kg 10 m / s 2 

x  
k 100 N / m 

 0.3 

 
mg 

(b) The potential energy in the spring is related to the displacement from equilibrium position by the equation 

U   
1 

kx 2   
1 100 N / m0.3m2    4.5 J 

2 2 
(c) Since energy is conserved during the oscillation of the mass, the kinetic energy of the mass as it passes 
through the equilibrium position is equal to the potential energy at the amplitude. Thus, 

 

K  U  
1 

mv 2 
2 

 

v    1.7 m / s 
 

(d) Since the amplitude of the oscillation is 0.3 m, it will rise to 0.3 m above the equilibrium position. 

(e) T  2π 
m 
 2π 

k 

3 kg 

100 N / m 
 1.1s 

 

Example 
A pendulum of mass 0.4 kg and length 0.6 m is pulled back and released from and angle of 10˚ to the vertical. 

 
(a) What is the potential energy of the mass at the instant it is released. Choose potential energy to be zero at the 
bottom of the swing. 
(b) What is the speed of the mass as it passes its lowest point? 

 
This same pendulum is taken to another planet where its period is 1.0 second. 
(c) What is the acceleration due to gravity on this planet? 

 
Solution 
(a) First we must find the height above the lowest point in the swing at the instant the pendulum is released. 

 
Recall from chapter 1 of this study guide 
that  h  L  L cosθ. 
Then 
U  mgL  L cosθ
U  0.4 kg 10 m / s 2 0.6 m  0.6 m cos10  h 

10˚ 

L 

 

(b) Conservation of energy: 

L 
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2 

20.4 J 
0.4 kg 

O 

  h   

G 



h 

U max  K max  
1 

mv 2 
 

v 



(c)(c) 



T  2π 

L
 
g 

 1.4 m / s 

4π2 L 
g 

T 2 

4π2 0.6 m
 

1.0 s2
 

 23.7 
m

 
s 2 

 
 

COMPOUND PENDULUM 
 

AIM: 
The aim of this experiment is to measure g using a compound pendulum. 

YOU WILL NEED: 

 
WHAT TO DO: 

 

First put the knife edge through the hole in the metre rule nearest end A, and 
record the time for 10 oscillations. Hence work out the time for one 
oscillation (T). mg 
Repeat this for each hole in the ruler for a series of different distances (d) 
from end A. 

 
ANALYSIS AND CALCULATIONS: 
Plot a graph of T against d. 
From the graph record a series of values of the simple equivalent pendulum 
(L). 
Calculate the value of g from the graph or from the formula: 

T2 = 42L/g 
 
 

-h G +h 

Torsion Pendulum: 
 
 

1. Introduction 
Torsion is a type of stress, which is easier to explain for a uniform wire or a rod when one end of the wire is 
fixed, and the other end is twisted about the axis of the wire by an external force. The external force causes 
deformation of the wire and appearance of counterforce in the material. If this end is released, the internal 
torsion force acts to restore the initial shape and size of the wire. This behavior is similar to the one of the 
released end of a linear spring with a mass attached. 

 
Attaching a mass to the twisting end of the wire, one can produce a torsion pendulum with circular oscillation of 
the mass in the plane perpendicular to the axis of the wire. 

 
To derive equations of rotational motion of the torsion pendulum, it would be useful to recall a resemblance of 
quantities in linear and rotational motion. We know that if initially a mass is motionless, its linear motion is 
caused by force F; correspondingly, if an extended body does not rotate initially, its rotation is caused by torque 
τ. The measure of inertia in linear motion is mass, m, while the measure of inertia in rotational motion is the 
moment of inertia about an axis of rotation, I. For linear and angular displacement in a one-dimensional 

2U 

m 

T 

   h1   h2 
L 
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problem, we use either x or θ. Thus, the two equations of motion are: 
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ω 2 
0   

 c 
2

 

 2I 

ω 2

Fx = maxand τ = Iα (1) 
 

whereax and α are the linear and the angular acceleration. 
If the linear motion is caused by elastic, or spring, force, the Hooke’s law gives Fx = -kx, where k is the spring 
constant. If the rotation is caused by torsion, the Hooke’s law must result in 

 
τ = -қθ 

 
whereқ is the torsion constant, or torsional stiffness, that depends on properties of the wire. It is essentially a 
measure of the amount of torque required to rotate the free end of the wire 1 radian. 

 
Your answer to the Preparatory Question 2 gives the following relationship between the moment of inertiaI of 
an oscillating object and the period of oscillation Tas: 

 
 

This relationship is true for oscillation where damping is negligible and can be ignored. Otherwise the 
relationship between I and κ  is given by 

 
 

whereω0can be found from ω

I  
κ
 
0 

 
 

 
 
 

(3**) 

(3*) 

 

ω 
2π

= 2πf; f is the frequency of damped oscillation; and c is the damping coefficient. 
T 

The relationship between the torsion constant κand the diameter of the wired is given in [3] (check your answer 
to the Preparatory Question 1) as 

 

κ 
πGd 4 

32l 
(4) 

 

wherel is the length of the wire andG is the shear modulus for the material of the wire. 
 

As any mechanical motion, the torsional oscillation is damped by resistive force originating from excitation of 
thermal modes of oscillation of atoms inside the crystal lattice of the wire and air resistance to the motion of the 
oscillating object. We can estimate the torque of the resistive force as being directly proportional to the angular 
speed of the twisting wire, i.e. the torque τR= -cdθ/dt (recall the drag force on mass on spring in viscose medium 
as R = -bv). Combining Eq.(1), (2) and the expression for τR, we obtain the equation of motion of a torsional 
pendulum as follows: 

 

d 2θ 
I  c 

dt 2 

dθ
κθ 0 

dt 

 
(5) 

 

The solution of Eq.(5) is similar to the solution of the equation for damped oscillation of a mass on spring and is 
given by: 

 
 

whereα = c/2I (7) 

θ Aeαt cosωt ϕ


(6) 

 

andα = β-1 with β being the time constant of the damped oscillation; c is the damping coefficient; ω is the 
angular frequency of torsional oscillation measured in the experiment; and φ can be made zero by releasing the 
object on the wire at a position of the greatest deviation from equilibrium. 
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0

n 

Equation (6) can be used to calculate c (damping coefficient) and β (time constant = amount of time to 
decaye times) with DataStudio interface and software. 

 
Another important formula is α = ω0/2Q, where Q is the quality factor and ω 2= κ / I (see Eq.3’). The ratio 

ζ = α/ω0 = (2Q)-1 (8) 
is called the damping ratio. 

 
 

Free vibration of One Degree of Freedom Systems 

 
Free vibration of a system is vibration due to its own internal forces (free of external impressive forces). It 
is initiated by an initial deviation (an energy input) of the system from its static equilibrium position. Once 
the initial deviation (a displacement or a velocity or both) is suddenly withdrawn, the strain energy stored 
in the system forces the system to return to its original, static equilibrium configuration. Due to the inertia 
of the system, the system will not return to the equilibrium configuration in a straightforward way. Instead 
it will oscillate about this position  free vibration. 

 
A system experiencing free vibration oscillates at one or more of its natural frequencies, which are 
properties of its mass and stiffness distribution. If there is no damping (an undamped system), the system 
vibrates at the (undamped) frequency (frequencies) forever. Otherwise, it vibrates at the (damped) 
frequency (frequencies) and dies out gradually. When damping is not large, as in most cases in 
engineering, undamped and damped frequencies are very close. Therefore usually no distinction is made 
between the two types of frequencies. 

 
The number of natural frequencies of a system equals to the number of its degrees-of-freedom. Normally, 
the low frequencies are more important. 

 
Damping always exists in materials. This damping is called material damping, which is always positive 
(dissipating energy). However, air flow, friction and others may ‘present’ negative damping. 
Undamped Free Vibration 

 

Equation of motion based on the free-body diagram 

mx kx  0 
 
 

x  ω2 x  0 ωn 





τ  2

natural frequency 
 
 

period 
 

 

x(t)  Asinωnt  Bcosωnt 
 
A andB are determined by the initial conditions. 

 

 
Sin or Cos 

 k   

m 

m 

k 
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 x(0) 
2 

   [x(0)] 
ω 

2 

 n 

gθ  0 → 

 x(0)ωn  

ω 

 

 
 

 
 
 
 
 
 

x(t)  
x(0) 

sinωt  x(0) cosωt 
n n 

n 
 
  sin(ωt ϕ) 
 

 

 
 ϕ arctan 

n where  x(0) 



Vibration of a pendulum 

How to establish the equation of motion? 

What is its natural frequency? 
 

ml 2θ  mgl sinθ lθ g sinθ 0 
 

 

lθ  ωn   




Systems with Rotational Degrees-of-Freedom 

 
 
 

Equation of Motion 

Joθ  Kθ 0 
 
 
 
 

 
natural frequency ωn   




Systems involving rotational degrees-of-freedom are always more difficult to deal with, in particular when 
translational degrees-of-freedom are also present. Gear care is needed to identify both degrees-of-freedom 
and construct suitable equations of motion. 

τ ? ωn   ? 

x(0)  ? x(0)  ? 

g 

l 

K 

J o 

K 

Jo 



 

Damped Free Vibration (first

 

 
 

 

x 
 
 

 
1. oscillatory motion (under

 
 

x(t) 
 

x(t) exp(ζωnt)(Asinωd

 

x(t) exp(ζωt)[
x(0) 

 
 
 
 
 
 
 
 
 
 
 

 

2. nonoscillatory motion (over
 
 

x(t) exp(ζωt)[Aexp(
n 

k 

c 

m 

n ω 

(first hurdle in studying vibration) 

mx  kx cx 
 

standard equation x  2ζω

ζ 
 

damping factor 
2

(under-damped ζ) 1 

 exp(ζωt)[C exp( ζ2  1ωt)  C
n 1 n 

ωdt  Bcosωdt)  X exp(ζωnt)sin(ωd
 

 

ζωn x(0) 
sinωt  x(0)cosωt] 

 

d 
d 

(over-damped ζ) 1 

exp( ζ2  1ωt)  Bexp(  ζ2  1ωt)]
 n 

 
mx  cx  kx  0 

ζωx ω2 x  0 
n n 

 
c 

 
c
 

2mωn 

C exp(  ζ2  1ωt)] 
 2 n 

(ωdt ϕ) 

 

ω ω 
 d d n 

damped natural 
frequency 

)] 
 n 

2 km 

1ζ2 
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3. critically damped motion () ζ 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x(t)  ( A  Bt)exp(ωnt) 
 

4. negative damping of ζ  0 as a special case of ζ 1 : 
 
 

x(t)  exp(ζωt)[C exp( ζ2  1ωt)  C exp(  ζ2  1ωt)] 
n 1 n 2 n 

positive 
 
 
 
 
 
 
 

 

Divergent oscillatory motion (flutter) due to negative damping 
 
 
 

Determination of Damping 
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)

)

x(t)  X exp(ζωnt)sin(ωdt ϕ) 
 
 

 

2 
 

1 

X x1
 

0 

 
Xexp(-ζωnt) 

 
x2 

X sinϕ 0 

-1 

1 2 3 4 5 

 

-2 

 
2 exp( 0.05t) sin( 0.9988 t ϕ) 

 

two consecutive peaks: 

x1   X exp(ζωnt1)sin(ωdt1 ϕ) 

x2   X exp(ζωnt2 )sin(ωdt2  ϕ)  X exp(ζωnt2 )sin(ωdt1 ϕ) 
 

δ ln 
x1

  ζωτ ζ   δ  
logarithm decrement




x n d ωτ 
2 n d 

 
Example: 

The 2nd and 4th peaks of a damped free vibration measured are respectively 0.021 and 0.013. What is 
damping factor? 

Solution: 
x(t2 ) 

 
 

 x(t2 ) 


x(t4 ) 
 exp(ζωn 2τd )  2ζωnτd  ln 

x(t 


2π 4πζ  x(t2 ) 
2ζωnτd  2ζωn 

ωn 


1  ζ2  ln 

x(t 


 x(t2 ) 


If a small damping is assumed, 2ζωnτd 
 4πζ  ln 

x(t
 

 . This leads to 


1  x(t2 ) 
 ζ  ln

4π  x(t4 
  0.0382  3.82% . 


1  ζ2 





 )

)

4 

4 

4 
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1 



1 
ln 

  x(t ) 2  

2 

 4π  x(t4 ) 


 )



4 

ζ 1  x(t2 ) 


If such an assumption is not made, then 
 

4π 
ln 

x(t 



and hence 

ζ2  1  x(t ) 
2

 

1  ζ2   
  

4π 

1 
 

 

ln 2 
 x(t4 ) 

 x(t2 ) 




. This leads to 

ln 4π x(t ) 
ζ   4      0.0381  3.81%  

. So virtually the same value. 
 

 

 
 

General differential equations 
 

dn x 
an dtn 

 an1 

dn1 x 
 

 

dtn1 
 ......  a 

dx 
 a  0 

1 dt1 0 

 

first solve the characteristic equation 
 

a λn   a λn   1   ......  a λ a   0 
n n 1 1 0 

 

If all roots λjaredistinct, then the general solution is 
 

x (t ) 
n 

 b j 
j 1 

exp( λj t ) 

wherebj are constants to be determined. 
 

If there are repeated roots, tm (integer m  1) appears in a solution. 

These are not interesting cases for mechanical vibration. 

 
λ in response to the change of a parameter reveal stability properties 

1  ζ2 


